-

7+ 93-00663

A

i
l

Ao

SUBMITTED TO: SPECIAL ISSUE OF THE JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING

.
-

ON PARALLEL I/0 SYSTEMS

&

Recovery Issues in Databases Using Redundant Disk

AD-A259 256
L

Redundant disk arrays provide a way for achieving rapid recovery from media fail-
ures with a relatively low storage cost for large scale database systems requiring high
In this paper we propose a method for using redundant disk arravs to

support rapid recovery from system crashes and transaciion aborts in addition to their
role in providing media failure recovery. A twin page scheme is used to store the parity
information in the array so that the time for transaction commit processing is not de-
graded. Using an analytical model and simulation results. we show that the proposed
method achieves a significant increase in the throughput of database svstems nusing re-

dundant disk arrays by reducing the number of recovery operations needed to maintain
the consistency of the database.

availability.

h
\
i

|

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory
1101 W. Springfield Ave

Arrays”

Antoine N. Mourad!
W. Kent Fuchs
Daniel G. Saab

University of Illinois

Urbana, [llinois 61301.

June 22, 1992

Abstract.

NTIC

o L FOTE

JAN1 21993

Accesion For

NTIS CRA&I
DTIC TAB

Uigrnoacad
J":C ‘ PRI

-

BY
Di.t w0
Avatiniiiny Ceiles
. A‘\,’u’; .G or
Dist

NISTQWINY

{

)

*This rescarch was supported in part by the National \eronautics and Space Ndmnustration i NASA) under
Contract NAG 1-613 and in part by the Department of the Navy and managed by the Office of the Chiet of Naval

Research under Grant NON0O14-91-J-1283.

"Ph. (217) 244-7180, Fax (217) 244-3686. email: mourad<vcrhc.uinc.edu

l

3

1 Introduction

In a database system. rapid recovery mayv be necessary for restoring the database 1o a consistent
state after a failure. Several types of failures can occur. The most tvpical are transaction aborts
which can be due to program errors, deadlocks. or can be user initiated. When a transaction
aborts, the recovery manager has to restore all database pages modified by the transaction to their
previous state. The second type of failure is a system crash. In this case system tables maintained
in main memory are lost. The recovery mechanism has to UNDO all updates made to the database
by transactions that were active when the crash occurred and to REDO modifications performed
by complete transactions and not vet reflected in the database at tlie time of the crash.

Another type of failure is media failure. One common way to deal with this type of failure is
by periodically generating archive copies of the database and by logging updates to the database
performed by committed transactions between archive copies into a redo log file. When a media
failure occurs the database is reconstructed from the last cop;v and the log file is used to apply
all updates performed by transactions that committed after the last copy was generated. In such
a case, a media failure causes significant down time and the overhead for recovery is quite high.
For large systems, e.g., with over 30 disks. the mean time to failure (MTTF) of the permanent
storage subsystem can be less than 25 days'. Mirrored disks have been emploved to provide rapid
media recovery [1]. However. disk mirroring incurs a 100% storage overhead which is prohibitive
for many applications. Redundant Disk Array (RDA) organizations [3. 10] provide an alternative
for maintaining reliable storage. However, even when disk mirroring or RDAs are used. archiving
and redo logging may still be necessary to protect the database against operator errors or system
software design errors.

In this paper. we present a technique that extioits the redundancy in disk arravs to support
recovery [rom transaction and svstem failures in addition to providing fast media recovery. This

is achieved bv using a twin page scheme for storing the parity information making it possible to

YAssuming an MTTF of 30.000 hours for each disk.

[8

keep the old version of the parity along with the new version. The old version of the parity is used
to undo updates performed by aborted transactions or by transactions interrupted by a svstem
failure.

In Sections 2 and 3 we briefly review several techniques for transaction recoverv in database
systems and discuss two RDA organizations. In Section 4. we present our database recovery scheme.
The results of our performance analysis are detailed in Section 3. Finally, in Section 6. we show

some simulation results using data from a real application.

2 Recovery Techniques

Recovery algorithms typically use some form of logging or shadowing. In the logging approach
(4], before a new version (after-image) of a record or page is written to the database. a copy of
the old version (before-image) is placed into a sequential log file. If a transaction aborts or the
system crashes, the [og file is analyzed and the state of the database is restored. In the shadowing
approach the update of a page is placed into a new physical page on disk [6, 9]. The physical pages
containing the old versions are released after all updates of the committing transaction have been
written to disk. One problem with the shadowing approach is dynamic mapping since it requires
maintaining a very large page table which leads to high I/O overhead during normal processing.
Another problem is the disk scrambling effect which decreases the sequentialitv of disk accesses.

In describing and in analyzing our method. we will use the following taxonomy of database
recovery algorithms introduced by Haerder and Reuter [5]. They classify recovery algorithms with
respect to the following four concepts:

Propagation? of updates. The propagation strategy can be ATOMIC' in which case any set
of updated pages can be propagated to the database in one atomic action. In the = ATOMI(case.

yropagation of updates can be interrupted by a svstem crash and database pages are updated-in-
prop | \ ! pay |

2Propagation to the database means that the new version is visible 1o higher level soltware. Updates can be
written to disk without being propagated (e.z.. shadowing).

place.

Page replacement. Two policies can be used: the STEAL policy allows pages modified by
uncommitted transactions to be propagated to the database before end-of-rransaction «EQT": the
opposite policy is referred to as ~STEAL. No UNDO recovery is necessary with a ~STEAL policy.

EOT processing. Two categories exist: the FORCE discipline requires all pages modified by
a transaction to be propagated before EOT; the opposite discipline is called ~FORCE.

Checkpointing Schemes. Checkpointing is used to propagate updates to the database in
order to minimize the number of REDQ recovery actions to be performed after a crash. In the
Transaction Oriented Checkpointing (TOC) scheme, a checkpoint is generated at the end of each
transaction. This is equivalent to using the FORCE discipline in EOT-processing. Two other types
of checkpoints can he used: Transaction Consistent Checkpoints (TCC(') are generated during quies-
cent periods where no transactions are being processed, Action Consistent Checkpoints (ACC') are

less restrictive and require that no update statements are processed during checkpoint generation.

3 Redundant Disk Arrays

3.1 Data Striping

Striped disk arrays have been proposed and implemented for increasing the transfr~ bandwidth in
high performance I/O subsystems [7. 8, 13]. In order to allow the use of a large number of disks in
such arrays without compromising the reliability of the I/O subsystem. redundancy is sometimes
included in the form of parity information. Patterson et al. [10] have presented several possible
organizations for Redundant Arrays of Inexpensive Disks (RAID). One interesting organization is
RAID with rotated parity in which blocks of data are interleaved across .V disks while the parity
of the .V blocks is written on the N + 17 disk. The parity is rotated over the set ol disks iu order
to avoid contention on the parity disk. Fignre | shows the array organization with four disks. The

organization allows both large (1ull stripe) concurrent accesses or small (individual disk) accesses.

DO

D3 D5

D6 D7 D¥
D10 DIl

Figure 1: RAID with rotated parity on four disks.

D00 D10 D20

D01 Dll D21

P30

P31

Figure 2: Parity striping of disk arrays.

In this paper, we concentrate on small read/write accesses. For a small write access, the data block
is read from the relevant disk and modified. To compute the new parity. the old parity has to be
read, XORed with the new data and XORed with the old data. Then the new data and new parity
can be written back to the corresponding disks. Stonebraker et al. [14] have advocated the use of

a RAID organization to provide high availability in database svstems.

3.2 Parity Striping

Gray et al. [3] studied ways of using an architecture such as RAID in on-line transaction processing
(OLTP) systems. They found that because of the nature of I/O requests in OLTP svstems. namely a
large number of small accesses. it is not convenient to have several disks servicing the same request.
Hence, the organization shown in Figure 2 was proposed. [t is referred to as parity striping. It
consists of reserving an area for parity on each disk and writing data sequentiallv on each disk
without interleaving. For a group of .V + 1 disks. each disk is divided into .V + 1 areas one of these
areas on each disk is reserved f{or parity and the other areas contain daia. NV data areas irom .V
ditterent disks are grouped together in a parity group and their parity is written on the parity area

of the ¥V + [** disk.

it

4 RDA-Based Recovery

In the remainder of this paper, we consider an [/O subsvstem that is a collection of redundant disk
arrays. The organization of the arravs being either parity striping ~r data striping (RAID with
rotated parity). In the case of data striping we assume that a large striping unit is used in order ro
ensure that I/O requests will typically be serviced by a single data disk. We also make the foiowing
assumptions: Communication between main memory and the I/O subsystem is performed using
fixed size pages; Database pages are updated in place which implies that propagation is ~ATOMIC:.

A STEAL policy is used thus allowing modified pages to be propagated before EOT.

4.1 General Description of the Approach

RDA-based recovery makes use of the parity information present in the disk arrays to undo updates
performed by aborted transactions. However, the parity is not sufficient by itself to undo all updates
performed by an aborted transaction. Updates that cannot be undone using the parity are dealt
with using one of the traditional recovery schemes.

A page parity group is the set of pages that share the same parity page. In the following. unless
there is ambiguity, we will use the term parity group to denote a page parity group. .\ parity group
can be in one of two states: clean or dirty. A parity group is dirty when one of its data pages has
been modified by a transaction and the modified version has been written back to the database
before the transaction modifying it commits (using the notation of Haerder and Reuter. the page
has been stolen from the buffer). Otherwise the parity group is called clean. Only one modified data
page per parity group can be written back to the database by uncommitted transactions without
UNDO logging. If additional pages in the parity group have been modified and need to be written
back to the database then their before-images must be logged first. A dirty parity group goes back
to the clean state when the transaction that caused it to become dirty commits. Figure 3 shows
the state transition diagram of a parity group. A table in main memorv contains the numbers of all
parity groups that are in the dirty state. It also contains the number of the data page within the

0

Transaction T modifies page D; and D; is

written back to the database before EQOT

T rereferences D,.
modifies it and D,
is written bhack to

the database
before EOT

Transaction T commits
Figure 3: State transition diagram of a page parity group.

group that caused the group to be in the dirty state and the number of the parity page holding the
updated parity. Only log .V bits need to be used to store the data page number and one bit for the
parity page number. The table is used to check whether a page updated by an active transaction
can be written back to disk without UNDO logging.

When a transaction updates a page. that page can be written back to the database without
UNDO logging if its parity group is clean or if its parity group is dirtv and the update is for the
same page that caused the group to move into the dirty state. i.e.. the same page has been updated.
stolen from the buffer then rereferenced by the same transaction. updated and stolen again from
the buffer before EOT?>. Note that this does not affect the degree of concurrency or interfere with
the locking policy used in the system. We do not specify when a transaction can or cannot medify
a page. We oniy specify when a modified page can be written back to disk without UNDO logging.

If a single parity page is used. then when a group becomes dirty the old parity information has
to be kept in the parity page to be able to recover in case of a transaction failure. That would
mean that when the transaction commits. the new parity has to be recomputed in order to update
the parity page. That would require reading all the data pages in the group in order to compute
the new parity. To avoid that problem a twin page scheme is used tor tiie parity pages. The basic

mechanism of the twin page scheme is as follows: one of the parity pages always contains the valid

“Normally such an event should not ocenr often since butfer management algorithins are not supposed to replace
a page that will be referenced again in the wear future.

D10 Dil

Figure 4: Data striping organization with the twin page scheme tor the parity.

D00 D10 D20
DO1 D11 D21

P30
P31

P40’

P41’

Figure 5: Parity striping organization with the twin page scheme for the parity.

parity of the group while the other page contains obsolete parity information. When a data page is
modified in a parity group. the obsolete parity page (P for example) is updated with the new parity
of the array. If the transaction performing the update commits then the modified parity page (P)
becomes the valid barity page otherwise the other parity page (P’) remains the valid parity page
and its contents are used to recover the data page that was modified by the failed transaction.
Figures 4 and 5 show the data striping organization and the parity striping organization when the
twin page scheme is used for the parity. Twin parity pages are denoted Pz and Pz’ in the data
striping case and Pzy and P:y/. with z = (& + 1)mod(.V + 2). in the parity striping case. Figure 6
shows the contents of a parity group including the twin parity pages. In order to recover the old
version of a data page after a transaction abort it is sufficient to XOR the contents of both parity
pages and the new data page: D,q = (P + P') & Dpew. When a parity group is dirty because
one of its data pages D; has been stolen from the buffer and another page D, needs to be written

to disk. UNDO logging must be performed for 1D, then both parity pages P and P’/ need to he

*The before-image ol the page in the case of page Togging or of the modihed recordis) i the case of record logging

Do D, Dv_; P P’

Figure 6: Tle contents of a page parity group.

updated since when the group is dirty it is necessary to maintain a current parity page reflecting
the actual parity of the data on disk and an ~old™ parity page that would be used to recover the
uncommitted data page D, in case of a transaction abort. In all cases. when writing a data page

to disk the corresponding parity page(s) must be updated first.

4.2 Twin Page Management

The twin parity pages are stored on different disks. This is necessary in order to be able to perform
transaction recovery following a disk failure. In order to identify which of the twin parity pages
contains the valid parity information. a timestamp is stored in the page header. The page with
the highest timestamp contains the valid parity information. When an update is undone after a
transaction or system failure, the timestamp of the current parity page is reset to 0. Algorithm
Current_Parity shown in Figure 7 selects the current parity page. When a data page is updated
both parity pages are read and one of them is selected for modification. Then the parity is computed
and the modified parity page is written back to disk. In order to avoid reading both parity pages.
a bit map can be maintained in main memory indicating which is the current parity page for each
of the parity groups in the database. However such a bit map may not survive a system crash.
Hence following a crash that destroys the man, algorithm Current _Parity will have to be used to
identify the current parity page and to reconstruct the bit map. In this case. two bits would have
to be used in the bit map for each parity group to code the three possible states: parity page P is
the current parity page. parity page P’ is the current parity page or the information is not available
and algorithm Current_Parity has to be nsed. Following a svstem crash a backeround process

that runs during idle periods of the system can be initiated to reconstruct the bit map.

must be written to a log tle.

Current_Parity{py)
begin
Read twin parity pages in party group pg:
if Timestamp(P) > Timestamp(P’) then
Current _Parity — P:
else
Current_Parity — P’
end

Figure 7: Algorithm Current_Parity determines the current parity page.

)

clo
PO PI -
O PO PI PO PI
i[c w|cC clw cl
PO P1 PO P1 U
PO PI
olc

C: committed; O: obsolete; [: invalid; W: working

Figure 8: State transition diagram of the twin parity pages.

Each of the twin parity pages can be in one of four states: committed. obsolete. working or
invalid [16]. A parity page is committed when it contains the last committed parity update. It is
obsolete when it contains old committed parity information. It is in the working state when it has
been updated by an active transaction. and it is in the invalid state if the last transaction updating

%

it has aborted. Figure R shows the state transition diagram of the twin parity pages.

10

4.3 Recovery from System Failure

Following a system crash we need to identify which transactions have to be backed out and which
pages have been modified on disk by those transactions. A Begin-Of-Transaction (BOT) record
needs to be written to a log file after the transaction begins and before it writes back any modified
pages to disk and an EOT record must be written to the log file when the transaction commits.
Modified database pages for which UNDO logging has been performed. can be recovered by reading
their before-images from the log. Modified database pages for which UNDO logging has not been
performed can be recovered using the parity pages. However information on which pages have been
written to the database without UNDO logging has to be saved in permanent storage. To solve
this problem. a technique similar to the one used in TWIST [11] can be emploved. In TWIST.
a twin page scheme is used to store all database pages. no before-image logging is performed and
the same problem of identifving which pages to undo after a crash is encountered. The solution
makes use of a log chain which consists of pointers stored in the page headers that link together
pages modified by the same active transaction. In our case. only modified pages written back to the
database before EQOT without UNDO logging will be part of the log chain. The head of the chain
though has to be logged along with the transaction id. 1/O operations to maintain the log chain

can be hidden behind regular /0 requests and do not affect significantly svstem performance.

5 Performance Analysis

In order to evaluate the benefit of RDA-recovery. we develop an analvtical model to evaluate
transaction throughput for different algorithms. Since the cost of maintaining parity information
in a system with redundant disk arravs is relativelv high. we do not advocate the nse of RDAs
solely for the purpose o supporting transaction and crash recovery, We look at ihie benefit of
using RDA recovery in a system that already needs RDAs for the purpose of rapid media recovery.

We do this by comparing the thronghput of svstems using traditional recovery algorithims and

redundant disk arrays to svstems with the same recovery algorithms in combination with RDA
recoverv. We consider both page aund record logging and in each case we examine two different
recovery algorithims and evaiuwate the improvement achieved by adding RDA recovery to them. As
far as storage is concernced. the extra cost involved in using RDA recovery is that of the twin page
scheme for the parity which is (100/.V)% ol the tnitial data storage cost.

RDA recovery reduces the amount of "NDO logging and hence is appropriate for systems using
update-in-place which implies ~ATOMI(propagation and a STEAL policy for page replacement.
We therefore restrict ourselves to the analvsis of such algorithms. Within this class of algorithms
we exainine both the FORCE and ~FORCFE strategies for EOT-processing. For algorithins of the
tvpe ~ATOMIC. STEAL. FORCE. only a TOC checkpointing policy makes sense. For algorithms
of the type ~ATOMIC. STEAL, = FORCE. both ACCor TCC checkpoints could be used however
algorithms using AC'C checkpointing were shown to outperform those using the T'C'C’ type® [12].
Hence we only look at the former type of checkpointing.

We use the same basic model as the onz introduced by Reuter in his evaluation of the perfor-
mance of several database recovery techniques [12]. We assume that the system is I/O bound and
therefore we look only at the number of I/0 requests required to perform a given operation. We
also assume thai the system is running continuously with no periodic shutdown. This implies that
all cleanup activities required by the algorithin are accounted for in the cost calculations instead
of assuming they are performed by some background process or during shutdown periods.

The workload considered consists of a set of P transactions executing concurrently in the svstenw.
Transactions are of two tvpes: update or retrieval. The fraction of update transactions is f,. Each
transaction accesses s database pages. The fraction of accessed pages that are nodified by an update
transaction is p,. To characterize the behavior of the database baffer. we nse the communality ¢
which denotes the probability that a page rea ted by an incoming transaction i~ present in the

buffer. The number of page frames in the buffer is denoted by 3. It is assumed that the bufter

“Also TCC checkpointing contradicts our assumption of a conttpuonsly runnitg svstem <ince it requires the
establishment of a quiescent point where no update transactions are present in the svstem

12

is sufficiently large so that once a traﬁsaction has referenced a page, the page will remain in the
buffer until it is no longer needed by the transaction®.

The cost of recovery after a system erash is denoted by ¢ and is measured by the number of
page transfers between main memory and the disk subsystem required to perform recovery. The
cost of executing a trausaction is denoted by ¢,. The transaction throughput r, is defined as the
number of transactions processed during an availability interval. An availability interval T is the
period between two system crashes. Since all cost measures are evaluated in terms of number of
I/0 operations, we assume that the availability interval is measured in units of page transfers’.

If checkpointing is used then the length of a checkpointing interval is denoted by I and is also
measured in units of page transfers. The cost of generating a checkpoint is denoted by ¢.. Assuming
that the crash occurs in the middle of a checkpointing interval, the number of page transfers available
for processing transactions in an availability interval is T — ¢; — ¢.((T — ¢s — [/2)/I). Hence the
throughput is given by:

re =T —es)l —cc/TY+¢./2)]cy

We assume that ¢, is independent of /. Heuce the optimal checkpointing interval can be easily

derived from the following equation [12]:

drl

_ deg 2\ _
ua (1/cn(—ﬁn —eo/ 1)+ (T = ey)eo/ I)) 0. (1)

Let ¢, denote the cost of updating a retrieval transaction and c, that of an update transaction.

Then ¢, can be expressed as follows:

= (l - fu)Cv' + fucu-

c, itself incluaes two components: the cost of reading pages that are not found in the database

®The page could still be replaced before the transaction commits if a STEAL policy is used. however if it is replaced
it will not be rereferenced by the transaction.

length of avatlability anterval i seconds
time to transfer a page to/from disk in seconds

Mathematcally 1 can be dehned as follows: [=

butfer and the cost of writing back the replaced pages if they have been modified. Hence:

er =L =C)+as(l = C)pm. (2)

where p,, denotes the probability that the replaced page was modified and o denotes the number
of page transfers necessaryv to perform one write to the disk array. « is equal to 3 or 4 depending
on whether or not the cid data page is in the buffer at the time of writing the new data. For c,.
we have two additional components which represent the cost of logging the transaction {(¢;) and the

cost of backing out the transaction {¢;) in the case where an abort occurs. Hence:

o = sl =)+ as(l = C)pm + ¢1 + pyes. (3)

where p, denotes the probability of an abort.

5.1 Evaluation of the Probability of Logging

We consider a set of A" pages that have been modified by active transactions and we compute the
expected value of the size of the subset of pages that can be written back to the database without
UNDO logging. .V is the number of data pages in a parity group and 5 is the total number of data
pages in the database. We assume that the A" pages are randomly chosen from the 5 pages in the
database. Note that by using data striping (RAID) with a large striping unit or parity striping. any
sequentiality in database accesses will act in favor of our scheme by distributing the pages accessed
over distinct parity groups.

The parity groups in the database are numbered from 1 to 5/.V. Let X\, 1 <1 < §/V, be
the random variable whose value is 1 if one of the A pages is a member of parity group i. and 0
otherwise. Let X' be the random variable denoting the number of paritv groups that contain all i’
pages. X is also the unmber of pages that can be directly written back to the database since one

page per parity group can he written back. We have:

Since the I pages are assumed to be randomly chosen, each parity group has the same probability

of being accessed by those A" page references. lence the X,’s are identically distributed. Therefore,

SIN

=1

the expected value of X is E[(X] = Y07 E[X,] = £ E[X,]. Since X is a Bernoulli random variable.

- . SN
E[X;] = Pr(X, =)and E[X] = %(1-Pr(.X'y, = 0)). which can be written: E[{.X] = % (1 - L(’—:}—))
; R

Hence if A" modified. “uncommitted™ pages are to be written to the database. the probability of

having to log one of those pages is given by:

S (S—AV)
_ 1 _ A U _ K
m=1-EX]/N=1 N (1 (f:)) . (4)

5.2 Page Logging
5.2.1 Algorithm of the Type ~ATOMIC, STEAL, FORCE, TOC

With the FORCE discipline, the checkpoint is taken at the end of each transaction. The cost of
checkpointing is therefore accounted for in the cost of logging. In the model. we set c. = 0. Given
our assumption that pages are not rereferenced by the calling transaction after they have been
replaced in the buffer. the cost of writing and logging a page will be the same whether the page is
stolen from the buffer before transaction commit or whether it stays in the buffer until EOT and is
then logged and written to the database. Hence we will account for all the costs involved in logging
the pages and writing them back to the database as part of the cost of logging. This allows us to

set p,, = 0 in the expressions for ¢, and ¢,. The expression for ¢; is:

=3 %Xsp, +4 x (28py) +4 x4

The first term is the cost of writing the pages back to the database. Each write to the disk array
costs three [/O operations since. with the FORCE discipline. the old data is kept in the buffer
until EQT for the purpose of UNDO logging. The second term is the cost of writing to the UNDO
and REDO log files. REDO information is needed only in the case where an operator error or

a system software error damages more than one disk in the disk array. The log files are stored

15

separately which makes reading the log to backout aborted transactions less costly. The last term
in the expression of ¢; is the cost of writing BOT and EOT records to each of the log files.

The probability of having to log a page with RDA recovery is dependent on the number A of
pages written back to the database by incomplete transactions. We assume that when a transaction
writes back a page to the database before committing, the other concurrent transactions are halfway
through writing their own modified pages. Therefore A" is equal to half the total number of pages
modified by concurrent update transactions. Hence the probability of logging is given by Equation 4
in which K is replaced with® Psf,p,/2. With RDA recovery. the formula for the cost of logging
becomes:

¢} = (34 2p1)spu + 4(spu + spupr + 4) + d(p — p;P)

The major difference with ¢; is that UNDO logging has to be performed only when the parity
group is dirty, i.e., with probability p;. The term 2p; is added to 3 to account for the fact that
when writing to a dirty parity group both parity pages need to be updated®. The last term in the
expression of ¢; denotes the cost of writing the log chain header to the log. The header is normally
written along with the BOT record in the same page except when the first page written by the
transaction to the database has to be logged and not all pages updated by the transaction have to
be logged.

To evaluate ¢, we assume that a transaction aborts in the middle of processing its pages and
that the other concurrent update transactions have also logged half their modified pages. The

UNDO log has to be read up to the BOT record of the aborting transaction.
e = (pus/2)(Pfi) + Pfu + 4(pus/2) + 4

The first term is the number of before-images that have to be read from the log. The second term

is the number of BOT/EOT records to be read. The third term is the number of page transfers

*Page logging implies the use of page locking and hence the sets of pages moditied by concnrrent update transactions
are disjoint.
?We assume that log file pages and data pages are not mixed in the same parity groups.

16

to and from the database to undo the modifications performed by the aborting transaction and
the last term accounts for the writing of a rollback record. With RDA recovery the above formula

becomes:
¢y = (pupts/2)Pfu+ (pi—= PP VP fu + Pfu+ (pus/2)6pr+ 5(1 = pr)) + 4

In the first term the number of logged before-images to be read is now multiplied by p;. The
second term is the expected number of log chain headers to be read from the log. The other major
difference is in the fourth term. It is due to the fact that, when recovering a page that has been
logged. up to six [/O operations might be necessary since its parity group may still be dirtyv!Y. On
the other hand. if the page has been written to the database without being logged. it is necessarv
to read both parity pages in its parity group and the “new” data page and then overwrite the
database page with the old data and modify the state of the parity page from working to invalid
by resetting the timestamp in its header. Hence five I/O operations will be necessary in the latter
case.

After a system crash., only UNDO recovery neceds to be performed. Hence the formula for ¢,
contains the cost of reading the UNDO log file up to the BOT record of the oldest transaction alive
at the time of the crash and then overwriting the modifications. The work of the oldest transaction
alive overlapped with the work of some committed transactions therefore the log records for half

the work of about 2P f, transactions need to be read. Hence the expressions for cs and ¢/ are:
Cs = Pfu(»‘l)u + 2) + 4(PfuPu-S/Q)

¢y = PLulspupt + 2(pr = p"") + 2) + P fulpus/2)(4pr + 5(1 = p1)) + S/
The term S/.V is an npper bound for the cost of reconstructing the bit map for the current parity

page.

In this instance and in other instances in the evaluation. we wse an upper bound for the costs involved in RDA
recovery in order 1o keep things simple. This will lead to a conservative estimate of the benelit of our method.

High update frequency High retrieval frequency

77300 - 175800 /
T 116004 T 399000 -
h RDA h
3 65900 u 322200
b h RDA
P 60200 P 245400 -
u] ltl
t
r, 54500 -RDA r, 168600 _RDA
48800 T T T 1 91800 T T T I
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
Communality, C Communality. ('

Figure 9: Results for ~ATOMIC, STEAL, FORCE. TOC

We evaluate the algorithms in two different environments depending on the frequency of update
transactions. Figure 9 shows the throughput as a function of the communality (' in a system with
high update frequency and in a system with high retrieval frequency. As expected the improvement
in throughput using RDA recovery is much more significant in the high update frequency environ-
ment. For the latter environment and for ' = 0.9 the increase in throughput is about 42%. All the
values for the different parameters of the model, except for N, were taken from [12]. These values
are: B =300, 5 = 5000, N = 10, P = 6. p, = 0.01 and T = 5.10%. For the high update frequency
environment, s = 10. f, = 0.8 and p, = 0.9 while for the high retrieval frequency environment.

s =40, f, = 0.1 and p, = 0.3.

5 2.2 Algorithm of the Type ~ATOMIC, STEAL, ~FORCE, ACC

In this case, at EQT. before- and after-images of modified pages are written to the log but the
modified pages are not written back to the database. They remain in the buffer until theyv ar:
replaced. REDO recovery has to be pertfornied after a system crash and 4 C'¢ checkpointing is used
to reduce the amount of REDO during crash recovery.

First we need to evaluate p,,. To do so. we need to compute the number of transactions that

18

successively reference a page during its life in the database buffer. If we look at the stream of
references to a page by successive transactions we can see that with probability € the page is
referenced when it is in the bulfer and with probability 1 — " it is referenced when it is not in the
buffer. Hence the number of references to the page during its life in the buffer follows a geometric
distribution with parameter C' which implies that the average number of references to the page
while it is in the buffer is 1/(1 —C'). Since the probability of a page being modified by a transaction
that references it is f,p,. the probability of a replaced page being modified during its life in the
buffer is!!:

pn=1-(1- ful)u)ll(l—c')

The cost of logging is simply the cost of writing before- and after-images of modified pages and

the BOT/EOT records to the log:

¢ = 42sp, + 2).

With RDA recovery, pages that have been stolen {rom the buffer before EOT do not have to have
their before-images logged. Therefore we need to evaluate the p obability p, for a page being stolen.
The number of references that could cause a given page to be stolen is (1 — C')s(P — 1) and the
probability that any one of those references causes the replacement of the page is 1/(B — Cs).

Hence the formula for p, is:

l (1-C)s(P-1)
== (1= —
Ps < B - (>

In the formula for p;. the value of A is Psf,p.ps/2. The before-image of a modified page will not

be logged with probability ps(1 — p;). Hence the cost of logging with RDA recovery is:
C; = 4(S]Ju + Spu(l -])s(l - 1)1)) + 2) + 4([)[- pll-sp“ps‘]).

For the cost of backing out a transaction. one difference with the FORCE scheme is that the

log file contains both before- and alter-images which will be read until the BOT record of the

"'"The same equation for p,m was derived in [12] using a lightly different argument.

19

aborting transaction is found. Another difference is that. with probability ('. the modified pages

to be undone are still in the buffer. Hence:
¢ =2 X (pus/2UP L)+ Ply +4puls/2)(1 = C) + 4
With RDA recovery, the cost of transaction backout becomes:
¢h = 2X(y5/2)(Pfu)+ P fut P ful pi=p{"P*P* D)+ pul5/2)((4+2p1)(1=C)(1=pa)+6pspi+5ps (1= pr)) +4
The cost of performing a checkpoint for ~-RDA and for RDA is given by:
ce = - Bpy +2),

c. = (44 2p1)(Bpm +2).

To evaluate the cost of recovery after a crash, we assume that a crash occurs in the middle of a
checkpoint interval. All transactions executed since the last checkpoint have to be redone. Let 7.
denote the number of transactions executed during a checkpoint interval. r. is given by r. = [/¢,

and the expression for ¢; is:
cs = (re/2) fular/4 + 4spu) + P fuler /4 + 4(s/2)pu — 1)

The —1 term corresponds to the EOT record which is accounted for in ¢;/4 but is not read. The

cost of recovery from a crash with the RDA recovery technique is:
s = (re/2) fulel/4 + 45pu) + P fulcl/4 + (5/2)pu(4(1 = ps) + 4pspr + 5ps(1 = pi)) = 1) + S/V.

The value of the optimal checkpointing interval [is obtained by plugging the expression for ¢; in

Equation 1. This vields:
I = (2cce(T = Pfules+ 40s/2p) = PO/ fuler + 4spa)2,

The formula for / in the case of RDA recovery is derived in a similar fashion. The value of o in the
expressions of ¢, and ¢, is 4 for =RDA and 1+ 2p for RDA becanse with the = FORCE discipline.

when replacement takes place the old version of the data is not available any more in the buffer.

20

High update frequency High retrieval frequency

75700 399709 1 /
{1 70120 Ih 337960
r r
E 6:4540 - W 276220
B L RDA
P 58960 P 214480 H
u u
t z
re 53380 re 152740 - -RDA
47800 T T T T] 91000-4 T T T T |
00 02 04 06 0K 1.0 00 02 04 06 08 1.0
Communality. ' Communality. '

Figure 10: Results for ~ATOMIC, STEAL, ~-FORCE, ACC

Figure 10 shows the results for both environments. It can be seen that the improvement is
not significant in this case. However the interesting result is that while without RDA recovery.
the = FORCE. AC(type algorithm outperforms the FORCE, TOC scheme. when RDA recovery
is used. the situation is reversed and the latter algorithm outperforms the former by a significant

margin.

5.3 Record Logging

In this section we look at recovery algorithms in which only modified records are logged. The
unit of transfer between main memory and secondary storage is still a page however. when logging
is performed, logged records are encapsulated into pages and then written to the log file. Some
additional parameters of the system need to be introduced for the analysis of record logging: d
denotes the number of update statements per transaction: r denotes the average length (in bytes)
of a long log entry such as a data record: ¢ denotes the average length of a short log entry such
as a table entry: [,. denotes the length of the BOT and EOT records: /,, denotes the length of a
physical page: [, denotes the length of a log chain header. The values for the first five parameters

are taken from [12]. These valies are: d = 3 for high update frequency environments and d = X

21

for low update frequency environments, r = 100. ¢ = 10, /. = 16 and [, = 2020. The value for /;
was set to 4. Assuming that each update statement causes one long log entry and that s > . the

average length of a log entry can he derived [12]:

= dr+ (5= d)e)/s.

5.3.1 Algorithm of the Type -ATOMIC, STEAL, FORCE, TOC

With record logging, the locking granule can be less than a page. We assume that record locking
is used in order to enhance concurrency. This implies that the total number of pages modified by
a given set of P concurrent transaction is not the same as for the above algorithms for which page
locking was assumed. We will denote this number by s,. An expression for s, is derived in the
Appendix. The value of K" in the expression of p; is s, /2. We assume that group commit is used
so that log records from different transactions can be grouped in the same page and written to the
log. The derivations of the cost equations are similar to those in Section 5.2.1. We simply list the

equations without detailed explanation.

= 3spy+ 4 x 202 + spullse + L))/1,

e = (34 2p1)spu + H2e + pullsc + L)/ + H 2o + spullse + L)pr + (be + L)pr = pP* /1
e = Pfulloc+ spulloc + L)/2)/1p + H(pus/2) + 4

¢y = Pfulloc+ spullbc + L)pi/2 + (bhe + L) (pi = i)/ + (Pus/2)(6pr + 3(1 — py)) + 4

¢s = Pfu(2e+ spulloc + L))/l + 4P fu(pus/2)

¢y = P2l + spulloe + L)pr + 2(1pe + L) pr = pP N/ + (P fupus/2)(4pr + 5(1 = pr)

Figure 11 shows the throughput for the FORCE. TOC type of algorithms with and without RDA
recovery as a function of the communality in the buffer for the case of record logging.
5.3.2 Algorithm of the Type ~ATOMIC, STEAL, ~FORCE, ACC

The cost equations for this case can be derived using the results of Sections 5.2.2 and 5.3.1. The

value of A in the expression for pyis ~, py/2.

High update frequency High retrieval frequency

D! —
215900 y 1102500
4 T 905240
1 202840 RDA ARG
: S
u 139780 4 I 07980
E o b 510720
=50 510720 +
lé 176720 lé RDA
re 163660 - re 313460 ~RDA
150600 — , . l 116200 , , . ; .
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Communality, ' Communality, ('

Figure 11: Results for ~ATOMIC. STEAL. FORCE. TOC. in the case of record logging.

a = M2 + spullee +2L))/1

¢ = 42 + spullye + L(2 = pol1 = p1))) + Ube + Wa)(p1 = pIP*P 1)) /1,
ey = Pfulc/8)+ 4pu(s/2)(1-C)+4

¢y = PLAc/S)+ puls/2)((4 4 2p)(L = CY1 = ps) + 6pspr + 5ps(1 = pr)) +
Cs = (I'C/'Z)f“(C[/-l + ‘1'51)15) + Pfu((-'(/‘1 + 41)1L(5/2))
c, = (re/2)fuler/4 + 4spy) + PLACGTY + puls/2)(5ps(L — pr) + 4L = ps(L= p))))

The equations for ¢. and ¢/, are the same as in Section 5.2.2. The equations for ¢, and ¢, need to
be modified to account for the extra cost involved in logging modified records in pages stolen from
the buffer before EOT. The modified record of a stolen page needs to be written to the log before
the page can bhe replaced. Let p; denote the proportion of replaced pages modified by uncommitted
transactions. We have p; = s, /(B — C's). where s} is the number of pages in the buffer modified

by the concurrently executing transactions as seen by an incoming transaction. s,

. is obtained by

replacing P with P — | in the expression for s,. This gives the following equations for ¢, and cZ.

the equations for ¢, and ¢/, are obtained in a similar fashion:

o
Il

‘(l - (7') + I‘(l - (')(I’m + 21)1)
" S =) 4+ s = CWopon + 2p)

.3
I

23

High update frequency High retrieval frequency

1945400 1475600 -
E 1576520 { 1203100
r r
g 1207640 - 4 930600 -
h h
P 838760 - P 655100
lt1 t RDA
r, 469880 ro 385600
“RDA ~RDA
101000 T . T l 113100 7 T , , ,
00 02 04 06 08 1.0 00 02 04 06 0.8 1.0
Communality, C Communality. C

Figure 12: Results for ~ATOMIC. STEAL. ~FORCE. ACC, in the case of record logging.

Figure 12 shows the throughput for the ~FORCE. ACC type of algorithms with and without
RDA recovery as a function of the communality in the buffer for both evaluation environments.
Unlike the page logging case, ~FORCE, ACC scheme performs much better than the FORCE. TOC
scheme for the range of values of C encountered in typical applications {2]. Also. for the ~FORCE.
ACC algorithm. the increase in throughput achieved by using RDA recovery is higher than for the
same algorithm with page logging. This is the case because. with record logging. the cost of logging
the updates of a stolen page is high relatively to the cost of logging non stolen pages and RDA
recovery reduces that cost by eliminating the need for logging in most cases. For example. for the
high update frequency environment and for C = 0.9, the increase in throughput is about 14%.
The benefit of RDA recovery increases with the amount of work performed by each transaction.
Figure 13 shows the percent increase in throughput achieved by RDA recovery as a function of the

number of pages accessed by each transaction (s) for the high update frequency environment with

C =09

2

S FORCE. ACC. record logging

TH A
., 604
lil 45 .
C
e .
2 30
e

15

0 T T T T 1
0 10 20 30 40 50

Number of pages accessed, s

Figure 13: Benefit of RDA recovery as a function of the number of pages referenced by a transaction.

6 Experimental Evaluation of FORCE. TOC Algorithms

We have conducted some experiments to corroborate the findings of our analytical model. We have
used data from an operational OLTP system. namely a Tandem NonStop svstem. The data were
extracted from log files generated by the Transaction Monitoring Facility (TMF){15] during normal
svstem operation. The log entries contained transaction status information. before and ~iter images
of modified data. names of accessed files and disks as well as timing information. Using the log
entries. we constructed a trace of update accesses performed by each transactio.. before it commits
or aborts.

Using this data. we simulated the behavior of the database buffer. the recovery algorithm and
the [/O subsystem. As in the analvtical model. we assumed that the svstem was /O bound and
hence we ignored cpu processing times and accounted only for the cost of performing 1/0. However
in the simulations. we did not simply count the number of I/O operations performed. but rather we
simulated the execution of the [/O requests in the disk array. We have simulated a parity striping
organization. Siunce the data did not contaln auy maltiblock references, we expecet the performance
of a data striping organization to be similar 1o that of parity striping. The disk parameters used

in the simulations are shown in Table 1. The database accessed in our trace resided on five disks.

Table 1: Disk parameters.

Max. latency 16.6 ms
| Max, seek 47 ms
| tracks per platter 1260

sectors per track 52

bytes per sector 512

number of platters 15

We assumed that the log file is stored on a separate disk array.

The data available to us did not include any read access information. Thus it was not possible
to use it to evaluate ~FORCE. ACC algoriths because. for these algorithms. the improvement
afforded by RDA recovery is dependent on the frequency of replacement of modified pages and
hence requires a detailed simulation of the buffer behavior. Without a trace of read accesses we
could not obtain reliable simulation results for those algorithms. However. for FORCE. TOC
algorithms, page replacement does not affect the cost of recovery operations as much as in the
~FORCE, ACC case. Therefore we were able to use the available data to obtain simulation results
for such algorithms. Since our analvtical model did not show much promise for RDA recovery in
the case of FORCE. TOC algorithms with record logging, we concentrated instead on page logging.
We did not simulate recovery from system crash since none occurred in the interval during which
the data was collected. Hence the throughput r, of the system was taken to be the reciprocal of the
average cost per transaction c¢,. ¢, was measured as the total cost (disk usage time) of executing
the I/O requests in the disk array system divided by the number of transactions. Figure 14 shows
the measured throughput'® of FORCE. TO(algorithms with and withont RDA recovery in the
case of page logging as a function of the number (3} of frames in the buffer.

An LRU buffer replacement policy was assumed. The hit ratio ranged from 77% for B = 50
to 97% for B = 200. The improvement in throughput decreases from 39% for B = 50 to 28% for

B = 100 and then increases slowly as B increases to reach about 309% for I3 = 200. The reason for

“2For clarity, we muliiphed the thronghput values by a coustant factor.

26

FORCE. TOC. page logging

150 7
T
h 130
o
u
g
Il 110 =
p
u
Y90+
e

70 T T B
50 100 150 200

Buffer size. B
Figure 14: Empirical results for FORCE. TOC algorithms with page logging.
the decrease in the first part of the curve is that for small values of B, some pages in the buffer are
replaced more than once which increases the amount of logging in the ~RDA case. For B > 100.
pages in the buffer are replaced at most once. hence the amount of logging remains about constant
as B increases while the amount of [/O to the database continues to decrease. Hence. as B goes

from 100 to 200. the savings due to RDA recovery become more significant relative to the overall

[/O cost.

7 Conclusions

In this paper. we have presented a scheme that uses redundant disk arrays to achieve rapid recovery
from media failures in database svstems and simultaneously provide support for recovery from
transaction aborts and system crashes. The redundancy present in the array is exploited to allow
a large fraction of pages modified by active transactions to be written to disk and updated in place
without the need for undo logging thus reducing the number of recovery actions performed by the
recovery component. The method uses a twin page scheme to store the parity information so that
it can be efficiently used in transaction undo recovery. The extra storage used is about (100/.V)%

of the size of the database. N being the number of disks in the array.

We used a detailed analvtical model to evaluate the benefit of our scheme in a system equipped
with redundant disk arrays. We found that, in the case of page logging, a FORCL. TOC algorithm
combined with RDA recovery significantly outperforms a FORCE. TOC algorithm without RDA
recovery as well as ~FORCE. ACC tvpe of algorithms. In the case of record logging. we found that
a ~FORCE, ACC algorithm performs best and that the addition of RDA recovery to it improves
significantly its performance especially for transactions with a large number of updated pages. We
also performed simulations using data from an operational OLTP system to validate some of the

results of the analytical model.

Appendix

Derivation of the Formula for s,

s, is the number of pages in the buffer updated by a set of P concurrent transactions. Let Sk
denote the number of pages in the buffer updated by A update transactions. Since there are Pf,
update transactions executing concurrently in the system. we have s, = SP/s)_ If we number the
Pf, update transaction from 1 to Pf, in the order of their entry in the svstem then when the
kth update transaction enters the system. it will find Csp, of the sp, pages it needs to modify
already in the buffer. We make the assumption that out of those pages, Csp, x S*~1/B belong
to the k — 1 update transaction already executing in the system!3. Hence. we have the following
recurrence equation:

SE— 5= = sp(1 = €SV B)

Using s = 8Py« we obtain 5, = ST = (—H.(l=(1-= C'sp,,/B)Pf“).

3 - L . .
2 Jpdate transactions can share pages becanse record logging is used instead of page logging.

28

Acknowledgements

The authors would like to thank Robert Horst. Jim Carley. Srikanth Shorolf. Robert van der Linden.

and Susan Whitford of Tandem C'orporation for providing the TMF audit tapes and for answering

nunerous questions.

References

[1]

2]

(3]

(4]

(5]

[6]

[7]

(9]

[10]

(11]

[12]

[13]

Bitton, D., and Gray, J. Disk shadowing. In Proceedings of the 14th International Conference
on Very Large Data Bases (Sept. 1988). pp. 331-338.

Effelsberg, W., and Haerder. T. Principles of database buffer management. ACM Transactions
on Database Systems 9. 4 (Dec. 1984). 560-595.

Gray, J., Horst. B.. and Walker, M. Parity striping of disk arrays: Low-cost reliable storage
with acceptable throughput. In Proceedings of the 16th International Conference on Very
Large Data Bases (Aug. 1990), pp. 148-161.

Gray. J., McJones. P., Blasgen. M.. Lindsay. B.. Lorie. R.. Price. T.. Putzolu. F.. and Traiger.
. The recovery manager of the svstem R database manager. ACM Computing Surveys 13. 2
(1981), 223-242.

Haerder, T., and Reuter. A. Principles of transaction-oriented database recovery. ACM Com-
puting Surveys 13, 4 (Dec. 1983). 287-317.

Kent, J., and Garcia-Molina. H. Optimizing shadow recovery algorithms. [EEE Trans. Softw.
Eng. 14, 2 (Feb. 1988). 155-168.

Kim, M. Y. Svnchronized disk interleaving. [EEE Trans. Comput. (-35. 11 (Nov. 1986).
978-988.

Livny, M., Khoshafian, S.. and Boral. H. Multi-disk management algorithms. In Proceedings
of the ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems (May
1987). pp. 69-77.

Lorie, R. A. Physical integrity in a large segmented database. ACM Trans. Database Syst. 2,
1 (Mar. 1977), 91-104.

Patterson. D.. Gibson. G.. and Katz. R. A case for redundant arravs of inexpensive disks
(RAID). In Proceedings of the ACH SIGHOD Conference (June [988). pp. 109-116.

Reuter. A. A fast transaction-oriented logging scheme for UNDO recovery. [EEE Trans. Softw.
Eng. SE-6. 4 (Julv 1980). 348-3356.

Reuter. A. Performance analyvsis of recovery techuniques. ACM Transactions on Database
Systems 9. b (Dee. 198:1). 526- 559.

Salem. K.. and Garcia-Molina. 1. Disk striping. In Proceedings of the IEEE Intcrnational
Conference on Data Enginecring (Feb. 1956), pp. 336-3-42.

29

[14] Stonebraker. M., Katz. R.. Patterson. D.. and Ousterhout. J. The design of XPRS. In
Proceedings of the 14th International Conference on Very Large Data Bases (Sept. 1988).
pp- 318-330.

(15] Tandem Computers Inc. [ntroduction to the Transaction Monitoring Facility (TMF). Cuper-
tino. CA. Part Number 15996.

[16] Wu, K.-L., and Fuchs. W. K. Rapid transaction-undo recovery using twin-page storage man-
agement. In Proceedings of IEELE Compsac {Nov. 1990). pp. 295-300.

30

